Copied to
clipboard

G = C42.174D6order 192 = 26·3

174th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.174D6, C6.372- 1+4, C6.822+ 1+4, C4⋊Q812S3, (C4×S3)⋊2Q8, C12⋊Q845C2, D6.6(C2×Q8), C4.41(S3×Q8), C4⋊C4.124D6, C12.55(C2×Q8), D6⋊Q8.4C2, (C2×Q8).110D6, Dic3.7(C2×Q8), C6.49(C22×Q8), Dic3.Q841C2, C422S3.8C2, (C2×C6).273C24, D6⋊C4.52C22, D63Q8.12C2, C12.6Q824C2, C4.Dic643C2, Dic3⋊Q827C2, C2.86(D46D6), (C4×C12).214C22, (C2×C12).106C23, (C6×Q8).140C22, C4⋊Dic3.252C22, C22.294(S3×C23), Dic3⋊C4.167C22, (C22×S3).234C23, C2.38(Q8.15D6), C35(C23.41C23), (C2×Dic3).144C23, (C2×Dic6).191C22, (C4×Dic3).162C22, C2.32(C2×S3×Q8), (C3×C4⋊Q8)⋊15C2, (S3×C4⋊C4).13C2, C4⋊C47S3.15C2, (S3×C2×C4).146C22, (C3×C4⋊C4).216C22, (C2×C4).219(C22×S3), SmallGroup(192,1288)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.174D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — C42.174D6
C3C2×C6 — C42.174D6
C1C22C4⋊Q8

Generators and relations for C42.174D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c5 >

Subgroups: 464 in 206 conjugacy classes, 103 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, C2×Q8, Dic6, C4×S3, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C2×C4⋊C4, C42⋊C2, C22⋊Q8, C42.C2, C4⋊Q8, C4⋊Q8, C4×Dic3, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, D6⋊C4, C4×C12, C3×C4⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, S3×C2×C4, C6×Q8, C23.41C23, C12.6Q8, C422S3, C12⋊Q8, Dic3.Q8, C4.Dic6, S3×C4⋊C4, C4⋊C47S3, D6⋊Q8, Dic3⋊Q8, D63Q8, C3×C4⋊Q8, C42.174D6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C24, C22×S3, C22×Q8, 2+ 1+4, 2- 1+4, S3×Q8, S3×C23, C23.41C23, D46D6, C2×S3×Q8, Q8.15D6, C42.174D6

Smallest permutation representation of C42.174D6
On 96 points
Generators in S96
(1 87 41 73)(2 74 42 88)(3 89 43 75)(4 76 44 90)(5 91 45 77)(6 78 46 92)(7 93 47 79)(8 80 48 94)(9 95 37 81)(10 82 38 96)(11 85 39 83)(12 84 40 86)(13 71 50 33)(14 34 51 72)(15 61 52 35)(16 36 53 62)(17 63 54 25)(18 26 55 64)(19 65 56 27)(20 28 57 66)(21 67 58 29)(22 30 59 68)(23 69 60 31)(24 32 49 70)
(1 33 47 65)(2 66 48 34)(3 35 37 67)(4 68 38 36)(5 25 39 69)(6 70 40 26)(7 27 41 71)(8 72 42 28)(9 29 43 61)(10 62 44 30)(11 31 45 63)(12 64 46 32)(13 79 56 87)(14 88 57 80)(15 81 58 89)(16 90 59 82)(17 83 60 91)(18 92 49 84)(19 73 50 93)(20 94 51 74)(21 75 52 95)(22 96 53 76)(23 77 54 85)(24 86 55 78)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 55 19 49)(14 60 20 54)(15 53 21 59)(16 58 22 52)(17 51 23 57)(18 56 24 50)(25 72 31 66)(26 65 32 71)(27 70 33 64)(28 63 34 69)(29 68 35 62)(30 61 36 67)(37 38 43 44)(39 48 45 42)(40 41 46 47)(73 78 79 84)(74 83 80 77)(75 76 81 82)(85 94 91 88)(86 87 92 93)(89 90 95 96)

G:=sub<Sym(96)| (1,87,41,73)(2,74,42,88)(3,89,43,75)(4,76,44,90)(5,91,45,77)(6,78,46,92)(7,93,47,79)(8,80,48,94)(9,95,37,81)(10,82,38,96)(11,85,39,83)(12,84,40,86)(13,71,50,33)(14,34,51,72)(15,61,52,35)(16,36,53,62)(17,63,54,25)(18,26,55,64)(19,65,56,27)(20,28,57,66)(21,67,58,29)(22,30,59,68)(23,69,60,31)(24,32,49,70), (1,33,47,65)(2,66,48,34)(3,35,37,67)(4,68,38,36)(5,25,39,69)(6,70,40,26)(7,27,41,71)(8,72,42,28)(9,29,43,61)(10,62,44,30)(11,31,45,63)(12,64,46,32)(13,79,56,87)(14,88,57,80)(15,81,58,89)(16,90,59,82)(17,83,60,91)(18,92,49,84)(19,73,50,93)(20,94,51,74)(21,75,52,95)(22,96,53,76)(23,77,54,85)(24,86,55,78), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,55,19,49)(14,60,20,54)(15,53,21,59)(16,58,22,52)(17,51,23,57)(18,56,24,50)(25,72,31,66)(26,65,32,71)(27,70,33,64)(28,63,34,69)(29,68,35,62)(30,61,36,67)(37,38,43,44)(39,48,45,42)(40,41,46,47)(73,78,79,84)(74,83,80,77)(75,76,81,82)(85,94,91,88)(86,87,92,93)(89,90,95,96)>;

G:=Group( (1,87,41,73)(2,74,42,88)(3,89,43,75)(4,76,44,90)(5,91,45,77)(6,78,46,92)(7,93,47,79)(8,80,48,94)(9,95,37,81)(10,82,38,96)(11,85,39,83)(12,84,40,86)(13,71,50,33)(14,34,51,72)(15,61,52,35)(16,36,53,62)(17,63,54,25)(18,26,55,64)(19,65,56,27)(20,28,57,66)(21,67,58,29)(22,30,59,68)(23,69,60,31)(24,32,49,70), (1,33,47,65)(2,66,48,34)(3,35,37,67)(4,68,38,36)(5,25,39,69)(6,70,40,26)(7,27,41,71)(8,72,42,28)(9,29,43,61)(10,62,44,30)(11,31,45,63)(12,64,46,32)(13,79,56,87)(14,88,57,80)(15,81,58,89)(16,90,59,82)(17,83,60,91)(18,92,49,84)(19,73,50,93)(20,94,51,74)(21,75,52,95)(22,96,53,76)(23,77,54,85)(24,86,55,78), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,55,19,49)(14,60,20,54)(15,53,21,59)(16,58,22,52)(17,51,23,57)(18,56,24,50)(25,72,31,66)(26,65,32,71)(27,70,33,64)(28,63,34,69)(29,68,35,62)(30,61,36,67)(37,38,43,44)(39,48,45,42)(40,41,46,47)(73,78,79,84)(74,83,80,77)(75,76,81,82)(85,94,91,88)(86,87,92,93)(89,90,95,96) );

G=PermutationGroup([[(1,87,41,73),(2,74,42,88),(3,89,43,75),(4,76,44,90),(5,91,45,77),(6,78,46,92),(7,93,47,79),(8,80,48,94),(9,95,37,81),(10,82,38,96),(11,85,39,83),(12,84,40,86),(13,71,50,33),(14,34,51,72),(15,61,52,35),(16,36,53,62),(17,63,54,25),(18,26,55,64),(19,65,56,27),(20,28,57,66),(21,67,58,29),(22,30,59,68),(23,69,60,31),(24,32,49,70)], [(1,33,47,65),(2,66,48,34),(3,35,37,67),(4,68,38,36),(5,25,39,69),(6,70,40,26),(7,27,41,71),(8,72,42,28),(9,29,43,61),(10,62,44,30),(11,31,45,63),(12,64,46,32),(13,79,56,87),(14,88,57,80),(15,81,58,89),(16,90,59,82),(17,83,60,91),(18,92,49,84),(19,73,50,93),(20,94,51,74),(21,75,52,95),(22,96,53,76),(23,77,54,85),(24,86,55,78)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,55,19,49),(14,60,20,54),(15,53,21,59),(16,58,22,52),(17,51,23,57),(18,56,24,50),(25,72,31,66),(26,65,32,71),(27,70,33,64),(28,63,34,69),(29,68,35,62),(30,61,36,67),(37,38,43,44),(39,48,45,42),(40,41,46,47),(73,78,79,84),(74,83,80,77),(75,76,81,82),(85,94,91,88),(86,87,92,93),(89,90,95,96)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C···4H4I4J4K···4P6A6B6C12A···12F12G12H12I12J
order1222223444···4444···466612···1212121212
size1111662224···46612···122224···48888

36 irreducible representations

dim1111111111112222244444
type+++++++++++++-++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2S3Q8D6D6D62+ 1+42- 1+4S3×Q8D46D6Q8.15D6
kernelC42.174D6C12.6Q8C422S3C12⋊Q8Dic3.Q8C4.Dic6S3×C4⋊C4C4⋊C47S3D6⋊Q8Dic3⋊Q8D63Q8C3×C4⋊Q8C4⋊Q8C4×S3C42C4⋊C4C2×Q8C6C6C4C2C2
# reps1111211122211414211222

Matrix representation of C42.174D6 in GL6(𝔽13)

100000
010000
0010811
0052111
00129115
0031283
,
0120000
100000
0011900
004200
000029
0000411
,
430000
390000
003253
0011155
00061211
0070210
,
9100000
1040000
003253
00121035
0048311
0084110

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,5,12,3,0,0,8,2,9,12,0,0,1,11,11,8,0,0,1,1,5,3],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,11,4,0,0,0,0,9,2,0,0,0,0,0,0,2,4,0,0,0,0,9,11],[4,3,0,0,0,0,3,9,0,0,0,0,0,0,3,11,0,7,0,0,2,1,6,0,0,0,5,5,12,2,0,0,3,5,11,10],[9,10,0,0,0,0,10,4,0,0,0,0,0,0,3,12,4,8,0,0,2,10,8,4,0,0,5,3,3,1,0,0,3,5,11,10] >;

C42.174D6 in GAP, Magma, Sage, TeX

C_4^2._{174}D_6
% in TeX

G:=Group("C4^2.174D6");
// GroupNames label

G:=SmallGroup(192,1288);
// by ID

G=gap.SmallGroup(192,1288);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,675,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽